Eta-invariant for parameter-dependent families with periodic coefficients Лекция Партнёр:ПОМИ РАН им. Стеклова Предмет:Математика Лектор:Константин Жуйков | Konstantin Zhuikov Курс лекций: Summer school Дата записи:28.06.21 Дата публикации:05.07.21 Embedded video for Eta-invariant for parameter-dependent families with periodic coefficients Код для блога: Другие лекции курса27 Spectral theory of Jacobi operators and asymptotic behavior of orthogonal polynomials. Part 1 ПОМИ РАН им. Стеклова Дмитрий Яфаев | Dimitri Yafaev Spectral theory of Jacobi operators and asymptotic behavior of orthogonal polynomials. Part 2 ПОМИ РАН им. Стеклова Дмитрий Яфаев | Dimitri Yafaev Spectral flow and some applications. Part 1 ПОМИ РАН им. Стеклова Владимир Назайкинский | Vladimir Nazaikinskii Spectral flow and some applications. Part 2 ПОМИ РАН им. Стеклова Владимир Назайкинский | Vladimir Nazaikinskii Eigenvalues and resonances emerging from thresholds in essential spectra. Part 1 ПОМИ РАН им. Стеклова Денис Борисов | Denis Borisov Eigenvalues and resonances emerging from thresholds in essential spectra. Part 2 ПОМИ РАН им. Стеклова Денис Борисов | Denis Borisov Asymptotics of fundamental solutions to 2 × 2 first order system of ordinary differential equations ПОМИ РАН им. Стеклова Алексей Косарев | Alexey Kosarev 2 Embedding constants in Sobolev spaces ПОМИ РАН им. Стеклова Татьяна Гарманова | Tatiana Garmanova Spectral theory of Jacobi operators and asymptotic behavior of orthogonal polynomials. Part 3 ПОМИ РАН им. Стеклова Дмитрий Яфаев | Dimitri Yafaev Spectral theory of Jacobi operators and asymptotic behavior of orthogonal polynomials. Part 4 ПОМИ РАН им. Стеклова Дмитрий Яфаев | Dimitri Yafaev Spectral flow and some applications. Part 3 ПОМИ РАН им. Стеклова Владимир Назайкинский | Vladimir Nazaikinskii Eigenvalues and resonances emerging from thresholds in essential spectra. Part 3 ПОМИ РАН им. Стеклова Денис Борисов | Denis Borisov Eigenvalues and resonances emerging from thresholds in essential spectra. Part 4 ПОМИ РАН им. Стеклова Денис Борисов | Denis Borisov Stochastic homogenization of convolution type operators and convolution type energies. Part 3 ПОМИ РАН им. Стеклова Андрей Пятницкий | Andrey Piatnitski Stochastic homogenization of convolution type operators and convolution type energies. Part 4 ПОМИ РАН им. Стеклова Андрей Пятницкий | Andrey Piatnitski A short introduction to the theory of ergodic operators Part 3 ПОМИ РАН им. Стеклова Александр Федотов | Alexander Fedotov A short introduction to the theory of ergodic operators. Part 4 ПОМИ РАН им. Стеклова Александр Федотов | Alexander Fedotov High-frequency scattering by boundary inflection: a model for asymptotic transition from discrete to continuous. Part 3 ПОМИ РАН им. Стеклова Валерий Смышляев | Valery Smyshlyaev High-frequency scattering by boundary inflection: a model for asymptotic transition from discrete to continuous. Part 4 ПОМИ РАН им. Стеклова Валерий Смышляев | Valery Smyshlyaev High-frequency scattering by boundary inflection: a model for asymptotic transition from discrete to continuous. Part 1 ПОМИ РАН им. Стеклова Валерий Смышляев | Valery Smyshlyaev High-frequency scattering by boundary inflection: a model for asymptotic transition from discrete to continuous. Part 2 ПОМИ РАН им. Стеклова Валерий Смышляев | Valery Smyshlyaev Stochastic homogenization of convolution type operators and convolution type energies. Part 1 ПОМИ РАН им. Стеклова Андрей Пятницкий | Andrey Piatnitski Stochastic homogenization of convolution type operators and convolution type energies. Part 2 ПОМИ РАН им. Стеклова Андрей Пятницкий | Andrey Piatnitski A short introduction to the theory of ergodic operators Part 1 ПОМИ РАН им. Стеклова Александр Федотов | Alexander Fedotov A short introduction to the theory of ergodic operators. Part 2 ПОМИ РАН им. Стеклова Александр Федотов | Alexander Fedotov Gaussian beam solutions to the Cauchy Problem for the Schrodinger Equation with a Delta Potential ПОМИ РАН им. Стеклова Ольга Щегорцова | Olga Shchegortsova On adiabatic evolution generated by a one-dimensional Schrodinger operator ПОМИ РАН им. Стеклова Василий Сергеев | Vasily Sergeev