Программно-аппаратная архитектура CUDA
КурсCUDA — это программно-аппаратная архитектура параллельных вычислений от NVIDIA, позволяющая существенно увеличить вычислительную производительность благодаря использованию GPU (графических процессоров).
В основе программной модели CUDA лежат три ключевые абстракции: иерархия групп потоков, разделяемая память и барьерная синхронизация, реализуемые в виде минимального набора расширений языка C/C++.
Платформа параллельных вычислений CUDA обеспечивает набор расширений, позволяющих выражать как параллелизм данных, так и параллелизм задач на уровне мелких и крупных структурных единиц. Программист может выбрать средства разработки: языки высокого уровня, такие как C, C++, Fortran или же открытые стандарты, такие как директивы OpenACC. Платформа параллельных вычислений CUDA используется на сегодняшний день в тысячах GPU-ускоренных приложений и тысячах опубликованных научных статьях.
Показателем роста применения CUDA является также рост использования графических процессоров Tesla в GPU вычислениях. На данный момент более 700 GPU кластеров установлены по всему миру в компаниях из списка Fortune 500, таких как Schlumberger и Chevron в энергетическом секторе, а также BNP Paribas в секторе банковских услуг.