Вы здесь

Big Bang, Blow Up and Modular Curves: Algebraic Geometry in Cosmology (joint work with M. Marcolli)

Лекция
Предмет:
Лектор:
Дата записи:
24.04.14
Дата публикации:
08.05.14
Код для блога:

Лекция прошла на русском языке.

Аннотация к статье, послужившей основой для доклада:

We introduce some algebraic geometric models in cosmology related to the "boundaries" of space-time: Big Bang, Mixmaster Universe, Penrose's crossovers between aeons.

We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point $x$. This creates a boundary  which consists of the projective space of tangent directions to $x$ and possibly of the light cone of $x$. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating  that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Penrose's idea to see the Big Bang as a sign of crossover from "the end of  previous aeon" of the expanding and cooling Universe to the "beginning of the next aeon" is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Big Bang boundary.