Вы здесь

Arnold Diffusion via Invariant Cylinders and Mather Variational Method

Лекция
Предмет:
Дата записи:
05.03.13
Дата публикации:
05.03.13
Код для блога:

The famous ergodic hypothesis claims that a typical Hamiltonian dynamics on a typical energy surface is ergodic. However, KAM theory disproves this. It establishes a persistent set of positive measure of invariant KAM tori. The (weaker) quasi ergodichypothesis, proposed by Ehrenfest and Birkhoff, says that a typical Hamiltonian dynamics on a typical energy surface has a dense orbit. This question is wide open. In early 60th Arnold constructed an example of instabilities for a nearly integrable Hamiltonian of dimension n>2 and conjectured that this is a generic phenomenon, nowadays, called Arnold diffusion. In the last two decades a variety of powerful techniques to attack this problem were developed. In particular, Mather discovered a large class of invariant sets and a developped delicate variational technique to shadow them. In two preprints: one joint with P. Bernard, K. Zhang and  another with K. Zhang we prove Arnold's conjecture in dimension n=3..

Аннотация миникурса